

 Prometheus

 prometheus

 2018-06-11

 Creative Commons Non-Commercial Share Alike 3.0

 Prometheus

 	
 Prometheus

 	
 0.0.1 Service Discovery

 	
 0.1 Design of a Prometheus SD

 	
 0.1.1 Does this make sense as an SD?

 	
 0.1.2 Mapping from SD to Prometheus

 	
 0.1.3 Other implementation considerations

 	
 0.2 Writing an SD mechanism

 	
 0.2.1 The SD interface

 	
 1 Federation

 	
 1.1 Use cases

 	
 1.1.1 Hierarchical federation

 	
 1.1.2 Cross-service federation

 	
 1.2 Configuring federation

 	
 2 Getting started

 	
 2.1 Downloading and running Prometheus

 	
 2.2 Configuring Prometheus to monitor itself

 	
 2.3 Starting Prometheus

 	
 2.4 Using the expression browser

 	
 2.5 Using the graphing interface

 	
 2.6 Starting up some sample targets

 	
 2.7 Configuring Prometheus to monitor the sample targets

 	
 2.8 Configure rules for aggregating scraped data into new time series

 	
 3 Prometheus 2.0

 	
 3.1 Content

 	
 4 Installation

 	
 4.1 Using pre-compiled binaries

 	
 4.2 From source

 	
 4.3 Using Docker

 	
 4.3.1 Volumes & bind-mount

 	
 4.3.2 Custom image

 	
 4.4 Using configuration management systems

 	
 4.4.1 Ansible

 	
 4.4.2 Chef

 	
 4.4.3 Puppet

 	
 4.4.4 SaltStack

 	
 5 Prometheus 2.0 migration guide

 	
 5.1 Flags

 	
 5.2 Alertmanager service discovery

 	
 5.3 Recording rules and alerts

 	
 5.4 Storage

 	
 5.5 PromQL

 	
 5.6 Miscellaneous

 	
 5.6.1 Prometheus non-root user

 	
 5.6.2 Prometheus lifecycle

 	
 6 API Stability Guarantees

 	
 7 Storage

 	
 7.1 Local storage

 	
 7.1.1 On-disk layout

 	
 7.2 Operational aspects

 	
 7.3 Remote storage integrations

 	
 7.3.1 Overview

 	
 7.3.2 Existing integrations

 	
 7.4 2.3.0 / 2018-06-05

 	
 7.5 2.2.1 / 2018-03-13

 	
 7.6 2.2.0 / 2018-03-08

 	
 7.7 2.1.0 / 2018-01-19

 	
 7.8 2.0.0 / 2017-11-08

 	
 7.9 1.8.2 / 2017-11-04

 	
 7.10 1.8.1 / 2017-10-19

 	
 7.11 1.8.0 / 2017-10-06

 	
 7.12 1.7.2 / 2017-09-26

 	
 7.13 1.7.1 / 2017-06-12

 	
 7.14 1.7.0 / 2017-06-06

 	
 7.15 1.6.3 / 2017-05-18

 	
 7.16 1.6.2 / 2017-05-11

 	
 7.17 1.6.1 / 2017-04-19

 	
 7.18 1.6.0 / 2017-04-14

 	
 7.19 1.5.3 / 2017-05-11

 	
 7.20 1.5.2 / 2017-02-10

 	
 7.21 1.5.1 / 2017-02-07

 	
 7.22 1.5.0 / 2017-01-23

 	
 7.23 1.4.1 / 2016-11-28

 	
 7.24 1.4.0 / 2016-11-25

 	
 7.25 1.3.1 / 2016-11-04

 	
 7.26 1.2.3 / 2016-11-04

 	
 7.27 1.3.0 / 2016-11-01

 	
 7.28 1.2.2 / 2016-10-30

 	
 7.29 1.2.1 / 2016-10-10

 	
 7.30 1.2.0 / 2016-10-07

 	
 7.31 1.1.3 / 2016-09-16

 	
 7.32 1.1.2 / 2016-09-08

 	
 7.33 1.1.1 / 2016-09-07

 	
 7.34 1.1.0 / 2016-09-03

 	
 7.35 1.0.2 / 2016-08-24

 	
 7.36 1.0.1 / 2016-07-21

 	
 7.37 1.0.0 / 2016-07-18

 	
 7.38 0.20.0 / 2016-06-15

 	
 7.39 0.19.3 / 2016-06-14

 	
 7.40 0.19.2 / 2016-05-29

 	
 7.41 0.19.1 / 2016-05-25

 	
 7.42 0.19.0 / 2016-05-24

 	
 7.43 0.18.0 / 2016-04-18

 	
 7.44 0.17.0 / 2016-03-02

 	
 7.45 0.16.2 / 2016-01-18

 	
 7.46 0.16.1 / 2015-10-16

 	
 7.47 0.16.0 / 2015-10-09

 	
 7.48 0.15.1 / 2015-07-27

 	
 7.49 0.15.0 / 2015-07-21

 	
 7.50 0.14.0 / 2015-06-01

 	
 7.51 0.13.4 / 2015-05-23

 	
 7.52 0.13.3 / 2015-05-11

 	
 7.53 0.13.2 / 2015-05-05

 	
 7.54 0.13.1 / 2015-04-09

 	
 7.55 0.13.0 / 2015-04-08

 	
 7.56 0.12.0 / 2015-03-04

 	
 7.57 0.11.1 / 2015-02-27

 	
 7.58 0.11.0 / 2015-02-23

 	
 7.59 0.10.0 / 2015-01-26

 	
 7.60 0.9.0 / 2015-01-23

 	
 7.61 0.8.0 / 2014-09-04

 	
 7.62 0.7.0 / 2014-08-06

 	
 7.63 0.6.0 / 2014-06-30

 	
 7.64 0.5.0 / 2014-05-28

 	
 7.65 0.4.0 / 2014-04-17

 	
 8 Contributing

 	
 8.1 Steps to Contribute

 	
 8.2 Pull Request Checklist

 	
 9 Prometheus Build Status

 	
 9.1 Architecture overview

 	
 9.2 Install

 	
 9.2.1 Precompiled binaries

 	
 9.2.2 Docker images

 	
 9.2.3 Building from source

 	
 9.3 More information

 	
 9.4 Contributing

 	
 9.5 License

 	
 9.6 Prometheus Community Code of Conduct

Prometheus

0.0.1 Service Discovery

This directory contains the service discovery (SD) component of Prometheus.

There is currently a moratorium on new service discovery mechanisms being added

to Prometheus due to a lack of developer capacity. In the meantime file_sd

remains available.

1.1 Design of a Prometheus SD

There are many requests to add new SDs to Prometheus, this section looks at

what makes a good SD and covers some of the common implementation issues.

1.1.1 Does this make sense as an SD?

The first question to be asked is does it make sense to add this particular

SD? An SD mechanism should be reasonably well established, and at a minimum in

use across multiple organisations. It should allow discovering of machines

and/or services running somewhere. When exactly an SD is popular enough to

justify being added to Prometheus natively is an open question.

It should not be a brand new SD mechanism, or a variant of an established

mechanism. We want to integrate Prometheus with the SD that’s already there in

your infrastructure, not invent yet more ways to do service discovery. We also

do not add mechanisms to work around users lacking service discovery and/or

configuration management infrastructure.

SDs that merely discover other applications running the same software (e.g. talk to one Kafka or Cassandra server to find the others) are not service

discovery. In that case the SD you should be looking at is whatever decides

that a machine is going to be a Kafka server, likely a machine database or

configuration management system.

If something is particularly custom or unusual, file_sd is the generic

mechanism provided for users to hook in. Generally with Prometheus we offer a

single generic mechanism for things with infinite variations, rather than

trying to support everything natively (see also, alertmanager webhook, remote

read, remote write, node exporter textfile collector). For example anything

that would involve talking to a relational database should use file_sd

instead.

For configuration management systems like Chef, while they do have a

database/API that’d in principle make sense to talk to for service discovery,

the idiomatic approach is to use Chef’s templating facilities to write out a

file for use with file_sd.

1.1.2 Mapping from SD to Prometheus

The general principle with SD is to extract all the potentially useful

information we can out of the SD, and let the user choose what they need of it

using

relabelling.

This information is generally termed metadata.

Metadata is exposed as a set of key/value pairs (labels) per target. The keys

are prefixed with __meta_<sdname>_<key>, and there should also be an __address__

label with the host:port of the target (preferably an IP address to avoid DNS

lookups). No other labelnames should be exposed.

It is very common for initial pull requests for new SDs to include hardcoded

assumptions that make sense for the the author’s setup. SD should be generic,

any customisation should be handled via relabelling. There should be basically

no business logic, filtering, or transformations of the data from the SD beyond

that which is needed to fit it into the metadata data model.

Arrays (e.g. a list of tags) should be converted to a single label with the

array values joined with a comma. Also prefix and suffix the value with a

comma. So for example the array [a, b, c] would become ,a,b,c,. As

relabelling regexes are fully anchored, this makes it easier to write correct

regexes against (.*,a,.* works no matter where a appears in the list). The

canonical example of this is __meta_consul_tags.

Maps, hashes and other forms of key/value pairs should be all prefixed and

exposed as labels. For example for EC2 tags, there would be

__meta_ec2_tag_Description=mydescription for the Description tag. Labelnames

may only contain [_a-zA-Z0-9], sanitize by replacing with underscores as needed.

For targets with multiple potential ports, you can a) expose them as a list, b)

if they’re named expose them as a map or c) expose them each as their own

target. Kubernetes SD takes the target per port approach. a) and b) can be

combined.

For machine-like SDs (OpenStack, EC2, Kubernetes to some extent) there may

be multiple network interfaces for a target. Thus far reporting the details

of only the first/primary network interface has sufficed.

1.1.3 Other implementation considerations

SDs are intended to dump all possible targets. For example the optional use of

EC2 service discovery would be to take the entire region’s worth of EC2

instances it provides and do everything needed in one scrape_config. For

large deployments where you are only interested in a small proportion of the

returned targets, this may cause performance issues. If this occurs it is

acceptable to also offer filtering via whatever mechanisms the SD exposes. For

EC2 that would be the Filter option on DescribeInstances. Keep in mind that

this is a performance optimisation, it should be possible to do the same

filtering using relabelling alone. As with SD generally, we do not invent new

ways to filter targets (that is what relabelling is for), merely offer up

whatever functionality the SD itself offers.

It is a general rule with Prometheus that all configuration comes from the

configuration file. While the libraries you use to talk to the SD may also

offer other mechanisms for providing configuration/authentication under the

covers (EC2’s use of environment variables being a prime example), using your SD

mechanism should not require this. Put another way, your SD implementation

should not read environment variables or files to obtain configuration.

Some SD mechanisms have rate limits that make them challenging to use. As an

example we have unfortunately had to reject Amazon ECS service discovery due to

the rate limits being so low that it would not be usable for anything beyond

small setups.

If a system offers multiple distinct types of SD, select which is in use with a

configuration option rather than returning them all from one mega SD that

requires relabelling to select just the one you want. So far we have only seen

this with Kubernetes. When a single SD with a selector vs. multiple distinct

SDs makes sense is an open question.

If there is a failure while processing talking to the SD, abort rather than

returning partial data. It is better to work from stale targets than partial

or incorrect metadata.

The information obtained from service discovery is not considered sensitive

security wise. Do not return secrets in metadata, anyone with access to

the Prometheus server will be able to see them.

1.2 Writing an SD mechanism

1.2.1 The SD interface

A Service Discovery (SD) mechanism has to discover targets and provide them to Prometheus. We expect similar targets to be grouped together, in the form of a TargetGroup. The SD mechanism sends the targets down to prometheus as list of TargetGroups.

An SD mechanism has to implement the Discoverer Interface:

type Discoverer interface {
 Run(ctx context.Context, up chan<- []*config.TargetGroup)
}

Prometheus will call the Run() method on a provider to initialise the discovery mechanism. The mechanism will then send all the TargetGroups into the channel.

Now the mechanism will watch for changes. For each update it can send all TargetGroups, or only changed and new TargetGroups, down the channel. Manager will handle

both cases.

For example if we had a discovery mechanism and it retrieves the following groups:

[]config.TargetGroup{
 {
 Targets: []model.LabelSet{
 {
 "__instance__": "10.11.150.1:7870",
 "hostname": "demo-target-1",
 "test": "simple-test",
 },
 {
 "__instance__": "10.11.150.4:7870",
 "hostname": "demo-target-2",
 "test": "simple-test",
 },
 },
 Labels: map[LabelName][LabelValue] {
 "job": "mysql",
 },
 "Source": "file1",
 },
 {
 Targets: []model.LabelSet{
 {
 "__instance__": "10.11.122.11:6001",
 "hostname": "demo-postgres-1",
 "test": "simple-test",
 },
 {
 "__instance__": "10.11.122.15:6001",
 "hostname": "demo-postgres-2",
 "test": "simple-test",
 },
 },
 Labels: map[LabelName][LabelValue] {
 "job": "postgres",
 },
 "Source": "file2",
 },
}

Here there are two TargetGroups one group with source file1 and another with file2. The grouping is implementation specific and could even be one target per group. But, one has to make sure every target group sent by an SD instance should have a Source which is unique across all the TargetGroups of that SD instance.

In this case, both the TargetGroups are sent down the channel the first time Run() is called. Now, for an update, we need to send the whole changed TargetGroup down the channel. i.e, if the target with hostname: demo-postgres-2 goes away, we send:

&config.TargetGroup{
 Targets: []model.LabelSet{
 {
 "__instance__": "10.11.122.11:6001",
 "hostname": "demo-postgres-1",
 "test": "simple-test",
 },
 },
 Labels: map[LabelName][LabelValue] {
 "job": "postgres",
 },
 "Source": "file2",
}

down the channel.

If all the targets in a group go away, we need to send the target groups with empty Targets down the channel. i.e, if all targets with job: postgres go away, we send:

&config.TargetGroup{
 Targets: nil,
 "Source": "file2",
}

down the channel.

<!– TODO: Add best-practices –>

2 Federation

Federation allows a Prometheus server to scrape selected time series from

another Prometheus server.

2.1 Use cases

There are different use cases for federation. Commonly, it is used to either

achieve scalable Prometheus monitoring setups or to pull related metrics from

one service’s Prometheus into another.

2.1.1 Hierarchical federation

Hierarchical federation allows Prometheus to scale to environments with tens of

data centers and millions of nodes. In this use case, the federation topology

resembles a tree, with higher-level Prometheus servers collecting aggregated

time series data from a larger number of subordinated servers.

For example, a setup might consist of many per-datacenter Prometheus servers

that collect data in high detail (instance-level drill-down), and a set of

global Prometheus servers which collect and store only aggregated data

(job-level drill-down) from those local servers. This provides an aggregate

global view and detailed local views.

2.1.2 Cross-service federation

In cross-service federation, a Prometheus server of one service is configured

to scrape selected data from another service’s Prometheus server to enable

alerting and queries against both datasets within a single server.

For example, a cluster scheduler running multiple services might expose

resource usage information (like memory and CPU usage) about service instances

running on the cluster. On the other hand, a service running on that cluster

will only expose application-specific service metrics. Often, these two sets of

metrics are scraped by separate Prometheus servers. Using federation, the

Prometheus server containing service-level metrics may pull in the cluster

resource usage metrics about its specific service from the cluster Prometheus,

so that both sets of metrics can be used within that server.

2.2 Configuring federation

On any given Prometheus server, the /federate endpoint allows retrieving the

current value for a selected set of time series in that server. At least one

match[] URL parameter must be specified to select the series to expose. Each

match[] argument needs to specify an

instant vector selector like

up or {job="api-server"}. If multiple match[] parameters are provided,

the union of all matched series is selected.

To federate metrics from one server to another, configure your destination

Prometheus server to scrape from the /federate endpoint of a source server,

while also enabling the honor_labels scrape option (to not overwrite any

labels exposed by the source server) and passing in the desired match[]

parameters. For example, the following scrape_config federates any series

with the label job="prometheus" or a metric name starting with job: from

the Prometheus servers at source-prometheus-{1,2,3}:9090 into the scraping

Prometheus:

- job_name: 'federate'
 scrape_interval: 15s

 honor_labels: true
 metrics_path: '/federate'

 params:
 'match[]':
 - '{job="prometheus"}'
 - '{__name__=~"job:.*"}'

 static_configs:
 - targets:
 - 'source-prometheus-1:9090'
 - 'source-prometheus-2:9090'
 - 'source-prometheus-3:9090'

3 Getting started

This guide is a “Hello World”-style tutorial which shows how to install,

configure, and use Prometheus in a simple example setup. You will download and run

Prometheus locally, configure it to scrape itself and an example application,

and then work with queries, rules, and graphs to make use of the collected time

series data.

3.1 Downloading and running Prometheus

Download the latest release of Prometheus for

your platform, then extract and run it:

tar xvfz prometheus-*.tar.gz
cd prometheus-*

Before starting Prometheus, let’s configure it.

3.2 Configuring Prometheus to monitor itself

Prometheus collects metrics from monitored targets by scraping metrics HTTP

endpoints on these targets. Since Prometheus also exposes data in the same

manner about itself, it can also scrape and monitor its own health.

While a Prometheus server that collects only data about itself is not very

useful in practice, it is a good starting example. Save the following basic

Prometheus configuration as a file named prometheus.yml:

global:
 scrape_interval: 15s # By default, scrape targets every 15 seconds.

 # Attach these labels to any time series or alerts when communicating with
 # external systems (federation, remote storage, Alertmanager).
 external_labels:
 monitor: 'codelab-monitor'

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
 - job_name: 'prometheus'

 # Override the global default and scrape targets from this job every 5 seconds.
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:9090']

For a complete specification of configuration options, see the

configuration documentation.

3.3 Starting Prometheus

To start Prometheus with your newly created configuration file, change to the

directory containing the Prometheus binary and run:

Start Prometheus.
By default, Prometheus stores its database in ./data (flag --storage.tsdb.path).
./prometheus --config.file=prometheus.yml

Prometheus should start up. You should also be able to browse to a status page

about itself at localhost:9090. Give it a couple of

seconds to collect data about itself from its own HTTP metrics endpoint.

You can also verify that Prometheus is serving metrics about itself by

navigating to its metrics endpoint:

localhost:9090/metrics

3.4 Using the expression browser

Let us try looking at some data that Prometheus has collected about itself. To

use Prometheus’s built-in expression browser, navigate to

http://localhost:9090/graph and choose the “Console” view within the “Graph”

tab.

As you can gather from localhost:9090/metrics,

one metric that Prometheus exports about itself is called

prometheus_target_interval_length_seconds (the actual amount of time between

target scrapes). Go ahead and enter this into the expression console:

prometheus_target_interval_length_seconds

This should return a number of different time series (along with the latest value

recorded for each), all with the metric name

prometheus_target_interval_length_seconds, but with different labels. These

labels designate different latency percentiles and target group intervals.

If we were only interested in the 99th percentile latencies, we could use this

query to retrieve that information:

prometheus_target_interval_length_seconds{quantile="0.99"}

To count the number of returned time series, you could write:

count(prometheus_target_interval_length_seconds)

For more about the expression language, see the

expression language documentation.

3.5 Using the graphing interface

To graph expressions, navigate to http://localhost:9090/graph and use the “Graph”

tab.

For example, enter the following expression to graph the per-second rate of chunks

being created in the self-scraped Prometheus:

rate(prometheus_tsdb_head_chunks_created_total[1m])

Experiment with the graph range parameters and other settings.

3.6 Starting up some sample targets

Let us make this more interesting and start some example targets for Prometheus

to scrape.

The Go client library includes an example which exports fictional RPC latencies

for three services with different latency distributions.

Ensure you have the Go compiler installed and

have a working Go build environment (with

correct GOPATH) set up.

Download the Go client library for Prometheus and run three of these example

processes:

Fetch the client library code and compile example.
git clone https://github.com/prometheus/client_golang.git
cd client_golang/examples/random
go get -d
go build

Start 3 example targets in separate terminals:
./random -listen-address=:8080
./random -listen-address=:8081
./random -listen-address=:8082

You should now have example targets listening on http://localhost:8080/metrics,

http://localhost:8081/metrics, and http://localhost:8082/metrics.

3.7 Configuring Prometheus to monitor the sample targets

Now we will configure Prometheus to scrape these new targets. Let’s group all

three endpoints into one job called example-random. However, imagine that the

first two endpoints are production targets, while the third one represents a

canary instance. To model this in Prometheus, we can add several groups of

endpoints to a single job, adding extra labels to each group of targets. In

this example, we will add the group="production" label to the first group of

targets, while adding group="canary" to the second.

To achieve this, add the following job definition to the scrape_configs

section in your prometheus.yml and restart your Prometheus instance:

scrape_configs:
 - job_name: 'example-random'

 # Override the global default and scrape targets from this job every 5 seconds.
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:8080', 'localhost:8081']
 labels:
 group: 'production'

 - targets: ['localhost:8082']
 labels:
 group: 'canary'

Go to the expression browser and verify that Prometheus now has information

about time series that these example endpoints expose, such as the

rpc_durations_seconds metric.

3.8 Configure rules for aggregating scraped data into new time series

Though not a problem in our example, queries that aggregate over thousands of

time series can get slow when computed ad-hoc. To make this more efficient,

Prometheus allows you to prerecord expressions into completely new persisted

time series via configured recording rules. Let’s say we are interested in

recording the per-second rate of example RPCs

(rpc_durations_seconds_count) averaged over all instances (but

preserving the job and service dimensions) as measured over a window of 5

minutes. We could write this as:

avg(rate(rpc_durations_seconds_count[5m])) by (job, service)

Try graphing this expression.

To record the time series resulting from this expression into a new metric

called job_service:rpc_durations_seconds_count:avg_rate5m, create a file

with the following recording rule and save it as prometheus.rules.yml:

groups:
- name: example
 rules:
 - record: job_service:rpc_durations_seconds_count:avg_rate5m
 expr: avg(rate(rpc_durations_seconds_count[5m])) by (job, service)

To make Prometheus pick up this new rule, add a rule_files statement to the

global configuration section in your prometheus.yml. The config should now

look like this:

global:
 scrape_interval: 15s # By default, scrape targets every 15 seconds.
 evaluation_interval: 15s # Evaluate rules every 15 seconds.

 # Attach these extra labels to all timeseries collected by this Prometheus instance.
 external_labels:
 monitor: 'codelab-monitor'

rule_files:
 - 'prometheus.rules.yml'

scrape_configs:
 - job_name: 'prometheus'

 # Override the global default and scrape targets from this job every 5 seconds.
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:9090']

 - job_name: 'example-random'

 # Override the global default and scrape targets from this job every 5 seconds.
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:8080', 'localhost:8081']
 labels:
 group: 'production'

 - targets: ['localhost:8082']
 labels:
 group: 'canary'

Restart Prometheus with the new configuration and verify that a new time series

with the metric name job_service:rpc_durations_seconds_count:avg_rate5m

is now available by querying it through the expression browser or graphing it.

4 Prometheus 2.0

Welcome to the documentation of the Prometheus server.

The documentation is available alongside all the project documentation at

prometheus.io.

4.1 Content

	Getting started

	Installation

	Configuration

	Querying

	Storage

	Federation

	Migration

5 Installation

5.1 Using pre-compiled binaries

We provide precompiled binaries for most official Prometheus components. Check

out the download section for a list of all

available versions.

5.2 From source

For building Prometheus components from source, see the Makefile targets in

the respective repository.

5.3 Using Docker

All Prometheus services are available as Docker images under the

prom organization.

Running Prometheus on Docker is as simple as docker run -p 9090:9090 prom/prometheus. This starts Prometheus with a sample configuration and

exposes it on port 9090.

The Prometheus image uses a volume to store the actual metrics. For

production deployments it is highly recommended to use the

Data Volume Container

pattern to ease managing the data on Prometheus upgrades.

To provide your own configuration, there are several options. Here are

two examples.

5.3.1 Volumes & bind-mount

Bind-mount your prometheus.yml from the host by running:

docker run -p 9090:9090 -v /tmp/prometheus.yml:/etc/prometheus/prometheus.yml \
 prom/prometheus

Or use an additional volume for the config:

docker run -p 9090:9090 -v /prometheus-data \
 prom/prometheus --config.file=/prometheus-data/prometheus.yml

5.3.2 Custom image

To avoid managing a file on the host and bind-mount it, the

configuration can be baked into the image. This works well if the

configuration itself is rather static and the same across all

environments.

For this, create a new directory with a Prometheus configuration and a

Dockerfile like this:

FROM prom/prometheus
ADD prometheus.yml /etc/prometheus/

Now build and run it:

docker build -t my-prometheus .
docker run -p 9090:9090 my-prometheus

A more advanced option is to render the configuration dynamically on start

with some tooling or even have a daemon update it periodically.

5.4 Using configuration management systems

If you prefer using configuration management systems you might be interested in

the following third-party contributions:

5.4.1 Ansible

	Cloud Alchemy/ansible-prometheus

5.4.2 Chef

	rayrod2030/chef-prometheus

5.4.3 Puppet

	puppet/prometheus

5.4.4 SaltStack

	bechtoldt/saltstack-prometheus-formula

6 Prometheus 2.0 migration guide

In line with our stability promise,

the Prometheus 2.0 release contains a number of backwards incompatible changes.

This document offers guidance on migrating from Prometheus 1.8 to Prometheus 2.0.

6.1 Flags

The format of the Prometheus command line flags has changed. Instead of a

single dash, all flags now use a double dash. Common flags (--config.file,

--web.listen-address and --web.external-url) are still the same but beyond

that, almost all the storage-related flags have been removed.

Some notable flags which have been removed:

	-alertmanager.url In Prometheus 2.0, the command line flags for configuring

 a static Alertmanager URL have been removed. Alertmanager must now be

 discovered via service discovery, see Alertmanager service discovery.

	-log.format In Prometheus 2.0 logs can only be streamed to standard error.

	-query.staleness-delta has been renamed to --query.lookback-delta; Prometheus

 2.0 introduces a new mechanism for handling staleness, see staleness.

	-storage.local.* Prometheus 2.0 introduces a new storage engine, as such all

 flags relating to the old engine have been removed. For information on the

 new engine, see Storage.

	-storage.remote.* Prometheus 2.0 has removed the already deprecated remote

 storage flags, and will fail to start if they are supplied. To write to

 InfluxDB, Graphite, or OpenTSDB use the relevant storage adapter.

6.2 Alertmanager service discovery

Alertmanager service discovery was introduced in Prometheus 1.4, allowing Prometheus

to dynamically discover Alertmanager replicas using the same mechanism as scrape

targets. In Prometheus 2.0, the command line flags for static Alertmanager config

have been removed, so the following command line flag:

./prometheus -alertmanager.url=http://alertmanager:9093/

Would be replaced with the following in the prometheus.yml config file:

alerting:
 alertmanagers:
 - static_configs:
 - targets:
 - alertmanager:9093

You can also use all the usual Prometheus service discovery integrations and

relabeling in your Alertmanager configuration. This snippet instructs

Prometheus to search for Kubernetes pods, in the default namespace, with the

label name: alertmanager and with a non-empty port.

alerting:
 alertmanagers:
 - kubernetes_sd_configs:
 - role: pod
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 relabel_configs:
 - source_labels: [__meta_kubernetes_pod_label_name]
 regex: alertmanager
 action: keep
 - source_labels: [__meta_kubernetes_namespace]
 regex: default
 action: keep
 - source_labels: [__meta_kubernetes_pod_container_port_number]
 regex:
 action: drop

6.3 Recording rules and alerts

The format for configuring alerting and recording rules has been changed to YAML.

An example of a recording rule and alert in the old format:

job:request_duration_seconds:histogram_quantile99 =
 histogram_quantile(0.99, sum(rate(request_duration_seconds_bucket[1m])) by (le, job))

ALERT FrontendRequestLatency
 IF job:request_duration_seconds:histogram_quantile99{job="frontend"} > 0.1
 FOR 5m
 ANNOTATIONS {
 summary = "High frontend request latency",
 }

Would look like this:

groups:
- name: example.rules
 rules:
 - record: job:request_duration_seconds:histogram_quantile99
 expr: histogram_quantile(0.99, sum(rate(request_duration_seconds_bucket[1m]))
 BY (le, job))
 - alert: FrontendRequestLatency
 expr: job:request_duration_seconds:histogram_quantile99{job="frontend"} > 0.1
 for: 5m
 annotations:
 summary: High frontend request latency

To help with the change, the promtool tool has a mode to automate the rules conversion. Given a .rules file, it will output a .rules.yml file in the

new format. For example:

$ promtool update rules example.rules

Note that you will need to use promtool from 2.0, not 1.8.

6.4 Storage

The data format in Prometheus 2.0 has completely changed and is not backwards

compatible with 1.8. To retain access to your historic monitoring data we

recommend you run a non-scraping Prometheus instance running at least version

1.8.1 in parallel with your Prometheus 2.0 instance, and have the new server

read existing data from the old one via the remote read protocol.

Your Prometheus 1.8 instance should be started with the following flags and an

config file containing only the external_labels setting (if any):

$./prometheus-1.8.1.linux-amd64/prometheus -web.listen-address ":9094" -config.file old.yml

Prometheus 2.0 can then be started (on the same machine) with the following flags:

$./prometheus-2.0.0.linux-amd64/prometheus --config.file prometheus.yml

Where prometheus.yml contains in addition to your full existing configuration, the stanza:

remote_read:
 - url: "http://localhost:9094/api/v1/read"

6.5 PromQL

The following features have been removed from PromQL:

	drop_common_labels function - the without aggregation modifier should be used

 instead.

	keep_common aggregation modifier - the by modifier should be used instead.

	count_scalar function - use cases are better handled by absent() or correct

 propagation of labels in operations.

See issue #3060 for more

details.

6.6 Miscellaneous

6.6.1 Prometheus non-root user

The Prometheus Docker image is now built to run Prometheus

as a non-root user. If you

want the Prometheus UI/API to listen on a low port number (say, port 80), you’ll

need to override it. For Kubernetes, you would use the following YAML:

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo-2
spec:
 securityContext:
 runAsUser: 0
...

See Configure a Security Context for a Pod or Container

for more details.

If you’re using Docker, then the following snippet would be used:

docker run -u root -p 80:80 prom/prometheus:v2.0.0-rc.2 --web.listen-address :80

6.6.2 Prometheus lifecycle

If you use the Prometheus /-/reload HTTP endpoint to automatically reload your

Prometheus config when it changes,

these endpoints are disabled by default for security reasons in Prometheus 2.0.

To enable them, set the --web.enable-lifecycle flag.

7 API Stability Guarantees

Prometheus promises API stability within a major version, and strives to avoid

breaking changes for key features. Some features, which are cosmetic, still

under development, or depend on 3rd party services, are not covered by this.

Things considered stable for 2.x:

	The query language and data model

	Alerting and recording rules

	The ingestion exposition format

	v1 HTTP API (used by dashboards and UIs)

	Configuration file format (minus the service discovery remote read/write, see below)

	Rule/alert file format

	Console template syntax and semantics

Things considered unstable for 2.x:

	Any feature listed as experimental or subject to change, including:

	The holt_winters PromQL function

	Remote read, remote write and the remote read endpoint

	v2 HTTP and GRPC APIs

	Service discovery integrations, with the exception of static_configs and file_sd_configs

	Go APIs of packages that are part of the server

	HTML generated by the web UI

	The metrics in the /metrics endpoint of Prometheus itself

	Exact on-disk format. Potential changes however, will be forward compatible and transparently handled by Prometheus

As long as you are not using any features marked as experimental/unstable, an

upgrade within a major version can usually be performed without any operational

adjustments and very little risk that anything will break. Any breaking changes

will be marked as CHANGE in release notes.

8 Storage

Prometheus includes a local on-disk time series database, but also optionally integrates with remote storage systems.

8.1 Local storage

Prometheus’s local time series database stores time series data in a custom format on disk.

8.1.1 On-disk layout

Ingested samples are grouped into blocks of two hours. Each two-hour block consists of a directory containing one or more chunk files that contain all time series samples for that window of time, as well as a metadata file and index file (which indexes metric names and labels to series in the chunk files). The block for currently incoming samples is kept in memory and not fully persisted yet. It is secured against crashes by a write-ahead-log (WAL) that can be replayed when the Prometheus server restarts after a crash. When series are deleted via the API, deletion records are stored in separate tombstone files (instead of deleting the data immediately from the chunk files).

The directory structure of a Prometheus server’s data directory will look something like this:

./data/01BKGV7JBM69T2G1BGBGM6KB12
./data/01BKGV7JBM69T2G1BGBGM6KB12/meta.json
./data/01BKGV7JBM69T2G1BGBGM6KB12/wal
./data/01BKGV7JBM69T2G1BGBGM6KB12/wal/000002
./data/01BKGV7JBM69T2G1BGBGM6KB12/wal/000001
./data/01BKGTZQ1SYQJTR4PB43C8PD98
./data/01BKGTZQ1SYQJTR4PB43C8PD98/meta.json
./data/01BKGTZQ1SYQJTR4PB43C8PD98/index
./data/01BKGTZQ1SYQJTR4PB43C8PD98/chunks
./data/01BKGTZQ1SYQJTR4PB43C8PD98/chunks/000001
./data/01BKGTZQ1SYQJTR4PB43C8PD98/tombstones
./data/01BKGTZQ1HHWHV8FBJXW1Y3W0K
./data/01BKGTZQ1HHWHV8FBJXW1Y3W0K/meta.json
./data/01BKGTZQ1HHWHV8FBJXW1Y3W0K/wal
./data/01BKGTZQ1HHWHV8FBJXW1Y3W0K/wal/000001
./data/01BKGV7JC0RY8A6MACW02A2PJD
./data/01BKGV7JC0RY8A6MACW02A2PJD/meta.json
./data/01BKGV7JC0RY8A6MACW02A2PJD/index
./data/01BKGV7JC0RY8A6MACW02A2PJD/chunks
./data/01BKGV7JC0RY8A6MACW02A2PJD/chunks/000001
./data/01BKGV7JC0RY8A6MACW02A2PJD/tombstones

The initial two-hour blocks are eventually compacted into longer blocks in the background.

Note that a limitation of the local storage is that it is not clustered or replicated. Thus, it is not arbitrarily scalable or durable in the face of disk or node outages and should thus be treated as more of an ephemeral sliding window of recent data. However, if your durability requirements are not strict, you may still succeed in storing up to years of data in the local storage.

8.2 Operational aspects

Prometheus has several flags that allow configuring the local storage. The most important ones are:

	--storage.tsdb.path: This determines where Prometheus writes its database. Defaults to data/.

	--storage.tsdb.retention: This determines when to remove old data. Defaults to 15d.

On average, Prometheus uses only around 1-2 bytes per sample. Thus, to plan the capacity of a Prometheus server, you can use the rough formula:

needed_disk_space = retention_time_seconds * ingested_samples_per_second * bytes_per_sample

To tune the rate of ingested samples per second, you can either reduce the number of time series you scrape (fewer targets or fewer series per target), or you can increase the scrape interval. However, reducing the number of series is likely more effective, due to compression of samples within a series.

If your local storage becomes corrupted for whatever reason, your best bet is to shut down Prometheus and remove the entire storage directory. However, you can also try removing individual block directories to resolve the problem. This means losing a time window of around two hours worth of data per block directory. Again, Prometheus’s local storage is not meant as durable long-term storage.

8.3 Remote storage integrations

Prometheus’s local storage is limited by single nodes in its scalability and durability. Instead of trying to solve clustered storage in Prometheus itself, Prometheus has a set of interfaces that allow integrating with remote storage systems.

8.3.1 Overview

Prometheus integrates with remote storage systems in two ways:

	Prometheus can write samples that it ingests to a remote URL in a standardized format.

	Prometheus can read (back) sample data from a remote URL in a standardized format.

[image: Remote read and write architecture]

The read and write protocols both use a snappy-compressed protocol buffer encoding over HTTP. The protocols are not considered as stable APIs yet and may change to use gRPC over HTTP/2 in the future, when all hops between Prometheus and the remote storage can safely be assumed to support HTTP/2.

For details on configuring remote storage integrations in Prometheus, see the remote write and remote read sections of the Prometheus configuration documentation.

For details on the request and response messages, see the remote storage protocol buffer definitions.

Note that on the read path, Prometheus only fetches raw series data for a set of label selectors and time ranges from the remote end. All PromQL evaluation on the raw data still happens in Prometheus itself. This means that remote read queries have some scalability limit, since all necessary data needs to be loaded into the querying Prometheus server first and then processed there. However, supporting fully distributed evaluation of PromQL was deemed infeasible for the time being.

8.3.2 Existing integrations

To learn more about existing integrations with remote storage systems, see the Integrations documentation.

8.4 2.3.0 / 2018-06-05

	[CHANGE] marathon_sd: use auth_token and auth_token_file for token-based authentication instead of bearer_token and bearer_token_file respectively.

	[CHANGE] Metric names for HTTP server metrics changed

	[FEATURE] Add query commands to promtool

	[FEATURE] Add security headers to HTTP server responses

	[FEATURE] Pass query hints via remote read API

	[FEATURE] Basic auth passwords can now be configured via file across all configuration

	[ENHANCEMENT] Optimise PromQL and API serialization for memory usage and allocations

	[ENHANCEMENT] Limit number of dropped targets in web UI

	[ENHANCEMENT] Consul and EC2 service discovery allow using server-side filtering for performance improvement

	[ENHANCEMENT] Add advanced filtering configuration to EC2 service discovery

	[ENHANCEMENT] marathon_sd: adds support for basic and bearer authentication, plus all other common HTTP client options (TLS config, proxy URL, etc.)

	[ENHANCEMENT] Provide machine type metadata and labels in GCE service discovery

	[ENHANCEMENT] Add pod controller kind and name to Kubernetes service discovery data

	[ENHANCEMENT] Move TSDB to flock-based log file that works with Docker containers

	[BUGFIX] Properly propagate storage errors in PromQL

	[BUGFIX] Fix path prefix for web pages

	[BUGFIX] Fix goroutine leak in Consul service discovery

	[BUGFIX] Fix races in scrape manager

	[BUGFIX] Fix OOM for very large k in PromQL topk() queries

	[BUGFIX] Make remote write more resilient to unavailable receivers

	[BUGFIX] Make remote write shutdown cleanly

	[BUGFIX] Don’t leak files on errors in TSDB’s tombstone cleanup

	[BUGFIX] Unary minus expressions now removes the metric name from results

	[BUGFIX] Fix bug that lead to wrong amount of samples considered for time range expressions

8.5 2.2.1 / 2018-03-13

	[BUGFIX] Fix data loss in TSDB on compaction

	[BUGFIX] Correctly stop timer in remote-write path

	[BUGFIX] Fix deadlock triggerd by loading targets page

	[BUGFIX] Fix incorrect buffering of samples on range selection queries

	[BUGFIX] Handle large index files on windows properly

8.6 2.2.0 / 2018-03-08

	[CHANGE] Rename file SD mtime metric.

	[CHANGE] Send target update on empty pod IP in Kubernetes SD.

	[FEATURE] Add API endpoint for flags.

	[FEATURE] Add API endpoint for dropped targets.

	[FEATURE] Display annotations on alerts page.

	[FEATURE] Add option to skip head data when taking snapshots.

	[ENHANCEMENT] Federation performance improvement.

	[ENHANCEMENT] Read bearer token file on every scrape.

	[ENHANCEMENT] Improve typeahead on /graph page.

	[ENHANCEMENT] Change rule file formatting.

	[ENHANCEMENT] Set consul server default to localhost:8500.

	[ENHANCEMENT] Add dropped Alertmanagers to API info endpoint.

	[ENHANCEMENT] Add OS type meta label to Azure SD.

	[ENHANCEMENT] Validate required fields in SD configuration.

	[BUGFIX] Prevent stack overflow on deep recursion in TSDB.

	[BUGFIX] Correctly read offsets in index files that are greater than 4GB.

	[BUGFIX] Fix scraping behavior for empty labels.

	[BUGFIX] Drop metric name for bool modifier.

	[BUGFIX] Fix races in discovery.

	[BUGFIX] Fix Kubernetes endpoints SD for empty subsets.

	[BUGFIX] Throttle updates from SD providers, which caused increased CPU usage and allocations.

	[BUGFIX] Fix TSDB block reload issue.

	[BUGFIX] Fix PromQL printing of empty without().

	[BUGFIX] Don’t reset FiredAt for inactive alerts.

	[BUGFIX] Fix erroneous file version changes and repair existing data.

8.7 2.1.0 / 2018-01-19

	[FEATURE] New Service Discovery UI showing labels before and after relabelling.

	[FEATURE] New Admin APIs added to v1 to delete, snapshot and remove tombstones.

	[ENHANCEMENT] The graph UI autcomplete now includes your previous queries.

	[ENHANCEMENT] Federation is now much faster for large numbers of series.

	[ENHANCEMENT] Added new metrics to measure rule timings.

	[ENHANCEMENT] Rule evaluation times added to the rules UI.

	[ENHANCEMENT] Added metrics to measure modified time of file SD files.

	[ENHANCEMENT] Kubernetes SD now includes POD UID in discovery metadata.

	[ENHANCEMENT] The Query APIs now return optional stats on query execution times.

	[ENHANCEMENT] The index now no longer has the 4GiB size limit and is also smaller.

	[BUGFIX] Remote read read_recent option is now false by default.

	[BUGFIX] Pass the right configuration to each Alertmanager (AM) when using multiple AM configs.

	[BUGFIX] Fix not-matchers not selecting series with labels unset.

	[BUGFIX] tsdb: Fix occasional panic in head block.

	[BUGFIX] tsdb: Close files before deletion to fix retention issues on Windows and NFS.

	[BUGFIX] tsdb: Cleanup and do not retry failing compactions.

	[BUGFIX] tsdb: Close WAL while shutting down.

8.8 2.0.0 / 2017-11-08

This release includes a completely rewritten storage, huge performance

improvements, but also many backwards incompatible changes. For more

information, read the announcement blog post and migration guide.

https://prometheus.io/blog/2017/11/08/announcing-prometheus-2-0/

https://prometheus.io/docs/prometheus/2.0/migration/

	[CHANGE] Completely rewritten storage layer, with WAL. This is not backwards compatible with 1.x storage, and many flags have changed/disappeared.

	[CHANGE] New staleness behavior. Series now marked stale after target scrapes no longer return them, and soon after targets disappear from service discovery.

	[CHANGE] Rules files use YAML syntax now. Conversion tool added to promtool.

	[CHANGE] Removed count_scalar, drop_common_labels functions and keep_common modifier from PromQL.

	[CHANGE] Rewritten exposition format parser with much higher performance. The Protobuf exposition format is no longer supported.

	[CHANGE] Example console templates updated for new storage and metrics names. Examples other than node exporter and Prometheus removed.

	[CHANGE] Admin and lifecycle APIs now disabled by default, can be re-enabled via flags

	[CHANGE] Flags switched to using Kingpin, all flags are now –flagname rather than -flagname.

	[FEATURE/CHANGE] Remote read can be configured to not read data which is available locally. This is enabled by default.

	[FEATURE] Rules can be grouped now. Rules within a rule group are executed sequentially.

	[FEATURE] Added experimental GRPC apis

	[FEATURE] Add timestamp() function to PromQL.

	[ENHANCEMENT] Remove remote read from the query path if no remote storage is configured.

	[ENHANCEMENT] Bump Consul HTTP client timeout to not match the Consul SD watch timeout.

	[ENHANCEMENT] Go-conntrack added to provide HTTP connection metrics.

	[BUGFIX] Fix connection leak in Consul SD.

8.9 1.8.2 / 2017-11-04

	[BUGFIX] EC2 service discovery: Do not crash if tags are empty.

8.10 1.8.1 / 2017-10-19

	[BUGFIX] Correctly handle external labels on remote read endpoint

8.11 1.8.0 / 2017-10-06

	[CHANGE] Rule links link to the Console tab rather than the Graph tab to

 not trigger expensive range queries by default.

	[FEATURE] Ability to act as a remote read endpoint for other Prometheus

 servers.

	[FEATURE] K8s SD: Support discovery of ingresses.

	[FEATURE] Consul SD: Support for node metadata.

	[FEATURE] Openstack SD: Support discovery of hypervisors.

	[FEATURE] Expose current Prometheus config via /status/config.

	[FEATURE] Allow to collapse jobs on /targets page.

	[FEATURE] Add /-/healthy and /-/ready endpoints.

	[FEATURE] Add color scheme support to console templates.

	[ENHANCEMENT] Remote storage connections use HTTP keep-alive.

	[ENHANCEMENT] Improved logging about remote storage.

	[ENHANCEMENT] Relaxed URL validation.

	[ENHANCEMENT] Openstack SD: Handle instances without IP.

	[ENHANCEMENT] Make remote storage queue manager configurable.

	[ENHANCEMENT] Validate metrics returned from remote read.

	[ENHANCEMENT] EC2 SD: Set a default region.

	[ENHANCEMENT] Changed help link to https://prometheus.io/docs.

	[BUGFIX] Fix floating-point precision issue in deriv function.

	[BUGFIX] Fix pprof endpoints when -web.route-prefix or -web.external-url is

 used.

	[BUGFIX] Fix handling of null target groups in file-based SD.

	[BUGFIX] Set the sample timestamp in date-related PromQL functions.

	[BUGFIX] Apply path prefix to redirect from deprecated graph URL.

	[BUGFIX] Fixed tests on MS Windows.

	[BUGFIX] Check for invalid UTF-8 in label values after relabeling.

8.12 1.7.2 / 2017-09-26

	[BUGFIX] Correctly remove all targets from DNS service discovery if the

 corresponding DNS query succeeds and returns an empty result.

	[BUGFIX] Correctly parse resolution input in expression browser.

	[BUGFIX] Consistently use UTC in the date picker of the expression browser.

	[BUGFIX] Correctly handle multiple ports in Marathon service discovery.

	[BUGFIX] Fix HTML escaping so that HTML templates compile with Go1.9.

	[BUGFIX] Prevent number of remote write shards from going negative.

	[BUGFIX] In the graphs created by the expression browser, render very large

 and small numbers in a readable way.

	[BUGFIX] Fix a rarely occurring iterator issue in varbit encoded chunks.

8.13 1.7.1 / 2017-06-12

	[BUGFIX] Fix double prefix redirect.

8.14 1.7.0 / 2017-06-06

	[CHANGE] Compress remote storage requests and responses with unframed/raw snappy.

	[CHANGE] Properly ellide secrets in config.

	[FEATURE] Add OpenStack service discovery.

	[FEATURE] Add ability to limit Kubernetes service discovery to certain namespaces.

	[FEATURE] Add metric for discovered number of Alertmanagers.

	[ENHANCEMENT] Print system information (uname) on start up.

	[ENHANCEMENT] Show gaps in graphs on expression browser.

	[ENHANCEMENT] Promtool linter checks counter naming and more reserved labels.

	[BUGFIX] Fix broken Mesos discovery.

	[BUGFIX] Fix redirect when external URL is set.

	[BUGFIX] Fix mutation of active alert elements by notifier.

	[BUGFIX] Fix HTTP error handling for remote write.

	[BUGFIX] Fix builds for Solaris/Illumos.

	[BUGFIX] Fix overflow checking in global config.

	[BUGFIX] Fix log level reporting issue.

	[BUGFIX] Fix ZooKeeper serverset discovery can become out-of-sync.

8.15 1.6.3 / 2017-05-18

	[BUGFIX] Fix disappearing Alertmanger targets in Alertmanager discovery.

	[BUGFIX] Fix panic with remote_write on ARMv7.

	[BUGFIX] Fix stacked graphs to adapt min/max values.

8.16 1.6.2 / 2017-05-11

	[BUGFIX] Fix potential memory leak in Kubernetes service discovery

8.17 1.6.1 / 2017-04-19

	[BUGFIX] Don’t panic if storage has no FPs even after initial wait

8.18 1.6.0 / 2017-04-14

	[CHANGE] Replaced the remote write implementations for various backends by a

 generic write interface with example adapter implementation for various

 backends. Note that both the previous and the current remote write

 implementations are experimental.

	[FEATURE] New flag -storage.local.target-heap-size to tell Prometheus about

 the desired heap size. This deprecates the flags

 -storage.local.memory-chunks and -storage.local.max-chunks-to-persist,

 which are kept for backward compatibility.

	[FEATURE] Add check-metrics to promtool to lint metric names.

	[FEATURE] Add Joyent Triton discovery.

	[FEATURE] X-Prometheus-Scrape-Timeout-Seconds header in HTTP scrape

 requests.

	[FEATURE] Remote read interface, including example for InfluxDB. Experimental.

	[FEATURE] Enable Consul SD to connect via TLS.

	[FEATURE] Marathon SD supports multiple ports.

	[FEATURE] Marathon SD supports bearer token for authentication.

	[FEATURE] Custom timeout for queries.

	[FEATURE] Expose buildQueryUrl in graph.js.

	[FEATURE] Add rickshawGraph property to the graph object in console

 templates.

	[FEATURE] New metrics exported by Prometheus itself:

	Summary prometheus_engine_query_duration_seconds

	Counter prometheus_evaluator_iterations_missed_total

	Counter prometheus_evaluator_iterations_total

	Gauge prometheus_local_storage_open_head_chunks

	Gauge prometheus_local_storage_target_heap_size

	[ENHANCEMENT] Reduce shut-down time by interrupting an ongoing checkpoint

 before starting the final checkpoint.

	[ENHANCEMENT] Auto-tweak times between checkpoints to limit time spent in

 checkpointing to 50%.

	[ENHANCEMENT] Improved crash recovery deals better with certain index

 corruptions.

	[ENHANCEMENT] Graphing deals better with constant time series.

	[ENHANCEMENT] Retry remote writes on recoverable errors.

	[ENHANCEMENT] Evict unused chunk descriptors during crash recovery to limit

 memory usage.

	[ENHANCEMENT] Smoother disk usage during series maintenance.

	[ENHANCEMENT] Targets on targets page sorted by instance within a job.

	[ENHANCEMENT] Sort labels in federation.

	[ENHANCEMENT] Set GOGC=40 by default, which results in much better memory

 utilization at the price of slightly higher CPU usage. If GOGC is set by

 the user, it is still honored as usual.

	[ENHANCEMENT] Close head chunks after being idle for the duration of the

 configured staleness delta. This helps to persist and evict head chunk of

 stale series more quickly.

	[ENHANCEMENT] Stricter checking of relabel config.

	[ENHANCEMENT] Cache busters for static web content.

	[ENHANCEMENT] Send Prometheus-specific user-agent header during scrapes.

	[ENHANCEMENT] Improved performance of series retention cut-off.

	[ENHANCEMENT] Mitigate impact of non-atomic sample ingestion on

 histogram_quantile by enforcing buckets to be monotonic.

	[ENHANCEMENT] Released binaries built with Go 1.8.1.

	[BUGFIX] Send instance="" with federation if instance not set.

	[BUGFIX] Update to new client_golang to get rid of unwanted quantile

 metrics in summaries.

	[BUGFIX] Introduce several additional guards against data corruption.

	[BUGFIX] Mark storage dirty and increment

 prometheus_local_storage_persist_errors_total on all relevant errors.

	[BUGFIX] Propagate storage errors as 500 in the HTTP API.

	[BUGFIX] Fix int64 overflow in timestamps in the HTTP API.

	[BUGFIX] Fix deadlock in Zookeeper SD.

	[BUGFIX] Fix fuzzy search problems in the web-UI auto-completion.

8.19 1.5.3 / 2017-05-11

	[BUGFIX] Fix potential memory leak in Kubernetes service discovery

8.20 1.5.2 / 2017-02-10

	[BUGFIX] Fix series corruption in a special case of series maintenance where

 the minimum series-file-shrink-ratio kicks in.

	[BUGFIX] Fix two panic conditions both related to processing a series

 scheduled to be quarantined.

	[ENHANCEMENT] Binaries built with Go1.7.5.

8.21 1.5.1 / 2017-02-07

	[BUGFIX] Don’t lose fully persisted memory series during checkpointing.

	[BUGFIX] Fix intermittently failing relabeling.

	[BUGFIX] Make -storage.local.series-file-shrink-ratio work.

	[BUGFIX] Remove race condition from TestLoop.

8.22 1.5.0 / 2017-01-23

	[CHANGE] Use lexicographic order to sort alerts by name.

	[FEATURE] Add Joyent Triton discovery.

	[FEATURE] Add scrape targets and alertmanager targets API.

	[FEATURE] Add various persistence related metrics.

	[FEATURE] Add various query engine related metrics.

	[FEATURE] Add ability to limit scrape samples, and related metrics.

	[FEATURE] Add labeldrop and labelkeep relabelling actions.

	[FEATURE] Display current working directory on status-page.

	[ENHANCEMENT] Strictly use ServiceAccount for in cluster configuration on Kubernetes.

	[ENHANCEMENT] Various performance and memory-management improvements.

	[BUGFIX] Fix basic auth for alertmanagers configured via flag.

	[BUGFIX] Don’t panic on decoding corrupt data.

	[BUGFIX] Ignore dotfiles in data directory.

	[BUGFIX] Abort on intermediate federation errors.

8.23 1.4.1 / 2016-11-28

	[BUGFIX] Fix Consul service discovery

8.24 1.4.0 / 2016-11-25

	[FEATURE] Allow configuring Alertmanagers via service discovery

	[FEATURE] Display used Alertmanagers on runtime page in the UI

	[FEATURE] Support profiles in AWS EC2 service discovery configuration

	[ENHANCEMENT] Remove duplicated logging of Kubernetes client errors

	[ENHANCEMENT] Add metrics about Kubernetes service discovery

	[BUGFIX] Update alert annotations on re-evaluation

	[BUGFIX] Fix export of group modifier in PromQL queries

	[BUGFIX] Remove potential deadlocks in several service discovery implementations

	[BUGFIX] Use proper float64 modulo in PromQL % binary operations

	[BUGFIX] Fix crash bug in Kubernetes service discovery

8.25 1.3.1 / 2016-11-04

This bug-fix release pulls in the fixes from the 1.2.3 release.

	[BUGFIX] Correctly handle empty Regex entry in relabel config.

	[BUGFIX] MOD (%) operator doesn’t panic with small floating point numbers.

	[BUGFIX] Updated miekg/dns vendoring to pick up upstream bug fixes.

	[ENHANCEMENT] Improved DNS error reporting.

8.26 1.2.3 / 2016-11-04

Note that this release is chronologically after 1.3.0.

	[BUGFIX] Correctly handle end time before start time in range queries.

	[BUGFIX] Error on negative -storage.staleness-delta

	[BUGFIX] Correctly handle empty Regex entry in relabel config.

	[BUGFIX] MOD (%) operator doesn’t panic with small floating point numbers.

	[BUGFIX] Updated miekg/dns vendoring to pick up upstream bug fixes.

	[ENHANCEMENT] Improved DNS error reporting.

8.27 1.3.0 / 2016-11-01

This is a breaking change to the Kubernetes service discovery.

	[CHANGE] Rework Kubernetes SD.

	[FEATURE] Add support for interpolating target_label.

	[FEATURE] Add GCE metadata as Prometheus meta labels.

	[ENHANCEMENT] Add EC2 SD metrics.

	[ENHANCEMENT] Add Azure SD metrics.

	[ENHANCEMENT] Add fuzzy search to /graph textarea.

	[ENHANCEMENT] Always show instance labels on target page.

	[BUGFIX] Validate query end time is not before start time.

	[BUGFIX] Error on negative -storage.staleness-delta

8.28 1.2.2 / 2016-10-30

	[BUGFIX] Correctly handle on() in alerts.

	[BUGFIX] UI: Deal properly with aborted requests.

	[BUGFIX] UI: Decode URL query parameters properly.

	[BUGFIX] Storage: Deal better with data corruption (non-monotonic timestamps).

	[BUGFIX] Remote storage: Re-add accidentally removed timeout flag.

	[BUGFIX] Updated a number of vendored packages to pick up upstream bug fixes.

8.29 1.2.1 / 2016-10-10

	[BUGFIX] Count chunk evictions properly so that the server doesn’t

 assume it runs out of memory and subsequencly throttles ingestion.

	[BUGFIX] Use Go1.7.1 for prebuilt binaries to fix issues on MacOS Sierra.

8.30 1.2.0 / 2016-10-07

	[FEATURE] Cleaner encoding of query parameters in /graph URLs.

	[FEATURE] PromQL: Add minute() function.

	[FEATURE] Add GCE service discovery.

	[FEATURE] Allow any valid UTF-8 string as job name.

	[FEATURE] Allow disabling local storage.

	[FEATURE] EC2 service discovery: Expose ec2_instance_state.

	[ENHANCEMENT] Various performance improvements in local storage.

	[BUGFIX] Zookeeper service discovery: Remove deleted nodes.

	[BUGFIX] Zookeeper service discovery: Resync state after Zookeeper failure.

	[BUGFIX] Remove JSON from HTTP Accept header.

	[BUGFIX] Fix flag validation of Alertmanager URL.

	[BUGFIX] Fix race condition on shutdown.

	[BUGFIX] Do not fail Consul discovery on Prometheus startup when Consul

 is down.

	[BUGFIX] Handle NaN in changes() correctly.

	[CHANGE] Experimental remote write path: Remove use of gRPC.

	[CHANGE] Experimental remote write path: Configuration via config file

 rather than command line flags.

	[FEATURE] Experimental remote write path: Add HTTP basic auth and TLS.

	[FEATURE] Experimental remote write path: Support for relabelling.

8.31 1.1.3 / 2016-09-16

	[ENHANCEMENT] Use golang-builder base image for tests in CircleCI.

	[ENHANCEMENT] Added unit tests for federation.

	[BUGFIX] Correctly de-dup metric families in federation output.

8.32 1.1.2 / 2016-09-08

	[BUGFIX] Allow label names that coincide with keywords.

8.33 1.1.1 / 2016-09-07

	[BUGFIX] Fix IPv6 escaping in service discovery integrations

	[BUGFIX] Fix default scrape port assignment for IPv6

8.34 1.1.0 / 2016-09-03

	[FEATURE] Add quantile and quantile_over_time.

	[FEATURE] Add stddev_over_time and stdvar_over_time.

	[FEATURE] Add various time and date functions.

	[FEATURE] Added toUpper and toLower formatting to templates.

	[FEATURE] Allow relabeling of alerts.

	[FEATURE] Allow URLs in targets defined via a JSON file.

	[FEATURE] Add idelta function.

	[FEATURE] ‘Remove graph’ button on the /graph page.

	[FEATURE] Kubernetes SD: Add node name and host IP to pod discovery.

	[FEATURE] New remote storage write path. EXPERIMENTAL!

	[ENHANCEMENT] Improve time-series index lookups.

	[ENHANCEMENT] Forbid invalid relabel configurations.

	[ENHANCEMENT] Improved various tests.

	[ENHANCEMENT] Add crash recovery metric ‘started_dirty’.

	[ENHANCEMENT] Fix (and simplify) populating series iterators.

	[ENHANCEMENT] Add job link on target page.

	[ENHANCEMENT] Message on empty Alerts page.

	[ENHANCEMENT] Various internal code refactorings and clean-ups.

	[ENHANCEMENT] Various improvements in the build system.

	[BUGFIX] Catch errors when unmarshalling delta/doubleDelta encoded chunks.

	[BUGFIX] Fix data race in lexer and lexer test.

	[BUGFIX] Trim stray whitespace from bearer token file.

	[BUGFIX] Avoid divide-by-zero panic on query_range?step=0.

	[BUGFIX] Detect invalid rule files at startup.

	[BUGFIX] Fix counter reset treatment in PromQL.

	[BUGFIX] Fix rule HTML escaping issues.

	[BUGFIX] Remove internal labels from alerts sent to AM.

8.35 1.0.2 / 2016-08-24

	[BUGFIX] Clean up old targets after config reload.

8.36 1.0.1 / 2016-07-21

	[BUGFIX] Exit with error on non-flag command-line arguments.

	[BUGFIX] Update example console templates to new HTTP API.

	[BUGFIX] Re-add logging flags.

8.37 1.0.0 / 2016-07-18

	[CHANGE] Remove deprecated query language keywords

	[CHANGE] Change Kubernetes SD to require specifying Kubernetes role

	[CHANGE] Use service address in Consul SD if available

	[CHANGE] Standardize all Prometheus internal metrics to second units

	[CHANGE] Remove unversioned legacy HTTP API

	[CHANGE] Remove legacy ingestion of JSON metric format

	[CHANGE] Remove deprecated target_groups configuration

	[FEATURE] Add binary power operation to PromQL

	[FEATURE] Add count_values aggregator

	[FEATURE] Add -web.route-prefix flag

	[FEATURE] Allow on(), by(), without() in PromQL with empty label sets

	[ENHANCEMENT] Make topk/bottomk query functions aggregators

	[BUGFIX] Fix annotations in alert rule printing

	[BUGFIX] Expand alert templating at evaluation time

	[BUGFIX] Fix edge case handling in crash recovery

	[BUGFIX] Hide testing package flags from help output

8.38 0.20.0 / 2016-06-15

This release contains multiple breaking changes to the configuration schema.

	[FEATURE] Allow configuring multiple Alertmanagers

	[FEATURE] Add server name to TLS configuration

	[FEATURE] Add labels for all node addresses and discover node port if available in Kubernetes SD

	[ENHANCEMENT] More meaningful configuration errors

	[ENHANCEMENT] Round scraping timestamps to milliseconds in web UI

	[ENHANCEMENT] Make number of storage fingerprint locks configurable

	[BUGFIX] Fix date parsing in console template graphs

	[BUGFIX] Fix static console files in Docker images

	[BUGFIX] Fix console JS XHR requests for IE11

	[BUGFIX] Add missing path prefix in new status page

	[CHANGE] Rename target_groups to static_configs in config files

	[CHANGE] Rename names to files in file SD configuration

	[CHANGE] Remove kubelet port config option in Kubernetes SD configuration

8.39 0.19.3 / 2016-06-14

	[BUGFIX] Handle Marathon apps with zero ports

	[BUGFIX] Fix startup panic in retrieval layer

8.40 0.19.2 / 2016-05-29

	[BUGFIX] Correctly handle GROUP_LEFT and GROUP_RIGHT without labels in

 string representation of expressions and in rules.

	[BUGFIX] Use -web.external-url for new status endpoints.

8.41 0.19.1 / 2016-05-25

	[BUGFIX] Handle service discovery panic affecting Kubernetes SD

	[BUGFIX] Fix web UI display issue in some browsers

8.42 0.19.0 / 2016-05-24

This version contains a breaking change to the query language. Please read

the documentation on the grouping behavior of vector matching:

https://prometheus.io/docs/querying/operators/#vector-matching

	[FEATURE] Add experimental Microsoft Azure service discovery

	[FEATURE] Add ignoring modifier for binary operations

	[FEATURE] Add pod discovery to Kubernetes service discovery

	[CHANGE] Vector matching takes grouping labels from one-side

	[ENHANCEMENT] Support time range on /api/v1/series endpoint

	[ENHANCEMENT] Partition status page into individual pages

	[BUGFIX] Fix issue of hanging target scrapes

8.43 0.18.0 / 2016-04-18

	[BUGFIX] Fix operator precedence in PromQL

	[BUGFIX] Never drop still open head chunk

	[BUGFIX] Fix missing ‘keep_common’ when printing AST node

	[CHANGE/BUGFIX] Target identity considers path and parameters additionally to host and port

	[CHANGE] Rename metric prometheus_local_storage_invalid_preload_requests_total to prometheus_local_storage_non_existent_series_matches_total

	[CHANGE] Support for old alerting rule syntax dropped

	[FEATURE] Deduplicate targets within the same scrape job

	[FEATURE] Add varbit chunk encoding (higher compression, more CPU usage – disabled by default)

	[FEATURE] Add holt_winters query function

	[FEATURE] Add relative complement unless operator to PromQL

	[ENHANCEMENT] Quarantine series file if data corruption is encountered (instead of crashing)

	[ENHANCEMENT] Validate Alertmanager URL

	[ENHANCEMENT] Use UTC for build timestamp

	[ENHANCEMENT] Improve index query performance (especially for active time series)

	[ENHANCEMENT] Instrument configuration reload duration

	[ENHANCEMENT] Instrument retrieval layer

	[ENHANCEMENT] Add Go version to prometheus_build_info metric

8.44 0.17.0 / 2016-03-02

This version no longer works with Alertmanager 0.0.4 and earlier!

The alerting rule syntax has changed as well but the old syntax is supported

up until version 0.18.

All regular expressions in PromQL are anchored now, matching the behavior of

regular expressions in config files.

	[CHANGE] Integrate with Alertmanager 0.1.0 and higher

	[CHANGE] Degraded storage mode renamed to rushed mode

	[CHANGE] New alerting rule syntax

	[CHANGE] Add label validation on ingestion

	[CHANGE] Regular expression matchers in PromQL are anchored

	[FEATURE] Add without aggregation modifier

	[FEATURE] Send alert resolved notifications to Alertmanager

	[FEATURE] Allow millisecond precision in configuration file

	[FEATURE] Support AirBnB’s Smartstack Nerve for service discovery

	[ENHANCEMENT] Storage switches less often between regular and rushed mode.

	[ENHANCEMENT] Storage switches into rushed mode if there are too many memory chunks.

	[ENHANCEMENT] Added more storage instrumentation

	[ENHANCEMENT] Improved instrumentation of notification handler

	[BUGFIX] Do not count head chunks as chunks waiting for persistence

	[BUGFIX] Handle OPTIONS HTTP requests to the API correctly

	[BUGFIX] Parsing of ranges in PromQL fixed

	[BUGFIX] Correctly validate URL flag parameters

	[BUGFIX] Log argument parse errors

	[BUGFIX] Properly handle creation of target with bad TLS config

	[BUGFIX] Fix of checkpoint timing issue

8.45 0.16.2 / 2016-01-18

	[FEATURE] Multiple authentication options for EC2 discovery added

	[FEATURE] Several meta labels for EC2 discovery added

	[FEATURE] Allow full URLs in static target groups (used e.g. by the blackbox_exporter)

	[FEATURE] Add Graphite remote-storage integration

	[FEATURE] Create separate Kubernetes targets for services and their endpoints

	[FEATURE] Add clamp_{min,max} functions to PromQL

	[FEATURE] Omitted time parameter in API query defaults to now

	[ENHANCEMENT] Less frequent time series file truncation

	[ENHANCEMENT] Instrument number of manually deleted time series

	[ENHANCEMENT] Ignore lost+found directory during storage version detection

	[CHANGE] Kubernetes masters renamed to api_servers

	[CHANGE] “Healthy” and “unhealthy” targets are now called “up” and “down” in the web UI

	[CHANGE] Remove undocumented 2nd argument of the delta function.

 (This is a BREAKING CHANGE for users of the undocumented 2nd argument.)

	[BUGFIX] Return proper HTTP status codes on API errors

	[BUGFIX] Fix Kubernetes authentication configuration

	[BUGFIX] Fix stripped OFFSET from in rule evaluation and display

	[BUGFIX] Do not crash on failing Consul SD initialization

	[BUGFIX] Revert changes to metric auto-completion

	[BUGFIX] Add config overflow validation for TLS configuration

	[BUGFIX] Skip already watched Zookeeper nodes in serverset SD

	[BUGFIX] Don’t federate stale samples

	[BUGFIX] Move NaN to end of result for topk/bottomk/sort/sort_desc/min/max

	[BUGFIX] Limit extrapolation of delta/rate/increase

	[BUGFIX] Fix unhandled error in rule evaluation

Some changes to the Kubernetes service discovery were integration since

it was released as a beta feature.

8.46 0.16.1 / 2015-10-16

	[FEATURE] Add irate() function.

	[ENHANCEMENT] Improved auto-completion in expression browser.

	[CHANGE] Kubernetes SD moves node label to instance label.

	[BUGFIX] Escape regexes in console templates.

8.47 0.16.0 / 2015-10-09

BREAKING CHANGES:

	Release tarballs now contain the built binaries in a nested directory.

	The hash_mod relabeling action now uses MD5 hashes instead of FNV hashes to

 achieve a better distribution.

	The DNS-SD meta label __meta_dns_srv_name was renamed to __meta_dns_name

 to reflect support for DNS record types other than SRV.

	The default full refresh interval for the file-based service discovery has been

 increased from 30 seconds to 5 minutes.

	In relabeling, parts of a source label that weren’t matched by

 the specified regular expression are no longer included in the replacement

 output.

	Queries no longer interpolate between two data points. Instead, the resulting

 value will always be the latest value before the evaluation query timestamp.

	Regular expressions supplied via the configuration are now anchored to match

 full strings instead of substrings.

	Global labels are not appended upon storing time series anymore. Instead,

 they are only appended when communicating with external systems

 (Alertmanager, remote storages, federation). They have thus also been renamed

 from global.labels to global.external_labels.

	The names and units of metrics related to remote storage sample appends have

 been changed.

	The experimental support for writing to InfluxDB has been updated to work

 with InfluxDB 0.9.x. 0.8.x versions of InfluxDB are not supported anymore.

	Escape sequences in double- and single-quoted string literals in rules or query

 expressions are now interpreted like escape sequences in Go string literals

 (https://golang.org/ref/spec#String_literals).

Future breaking changes / deprecated features:

	The delta() function had an undocumented optional second boolean argument

 to make it behave like increase(). This second argument will be removed in

 the future. Migrate any occurrences of delta(x, 1) to use increase(x)

 instead.

	Support for filter operators between two scalar values (like 2 > 1) will be

 removed in the future. These will require a bool modifier on the operator,

 e.g. 2 > bool 1.

All changes:

	[CHANGE] Renamed global.labels to global.external_labels.

	[CHANGE] Vendoring is now done via govendor instead of godep.

	[CHANGE] Change web UI root page to show the graphing interface instead of

 the server status page.

	[CHANGE] Append global labels only when communicating with external systems

 instead of storing them locally.

	[CHANGE] Change all regexes in the configuration to do full-string matches

 instead of substring matches.

	[CHANGE] Remove interpolation of vector values in queries.

	[CHANGE] For alert SUMMARY/DESCRIPTION template fields, cast the alert

 value to float64 to work with common templating functions.

	[CHANGE] In relabeling, don’t include unmatched source label parts in the

 replacement.

	[CHANGE] Change default full refresh interval for the file-based service

 discovery from 30 seconds to 5 minutes.

	[CHANGE] Rename the DNS-SD meta label __meta_dns_srv_name to

 __meta_dns_name to reflect support for other record types than SRV.

	[CHANGE] Release tarballs now contain the binaries in a nested directory.

	[CHANGE] Update InfluxDB write support to work with InfluxDB 0.9.x.

	[FEATURE] Support full “Go-style” escape sequences in strings and add raw

 string literals.

	[FEATURE] Add EC2 service discovery support.

	[FEATURE] Allow configuring TLS options in scrape configurations.

	[FEATURE] Add instrumentation around configuration reloads.

	[FEATURE] Add bool modifier to comparison operators to enable boolean

 (0/1) output instead of filtering.

	[FEATURE] In Zookeeper serverset discovery, provide __meta_serverset_shard

 label with the serverset shard number.

	[FEATURE] Provide __meta_consul_service_id meta label in Consul service

 discovery.

	[FEATURE] Allow scalar expressions in recording rules to enable use cases

 such as building constant metrics.

	[FEATURE] Add label_replace() and vector() query language functions.

	[FEATURE] In Consul service discovery, fill in the __meta_consul_dc

 datacenter label from the Consul agent when it’s not set in the Consul SD

 config.

	[FEATURE] Scrape all services upon empty services list in Consul service

 discovery.

	[FEATURE] Add labelmap relabeling action to map a set of input labels to a

 set of output labels using regular expressions.

	[FEATURE] Introduce __tmp as a relabeling label prefix that is guaranteed

 to not be used by Prometheus internally.

	[FEATURE] Kubernetes-based service discovery.

	[FEATURE] Marathon-based service discovery.

	[FEATURE] Support multiple series names in console graphs JavaScript library.

	[FEATURE] Allow reloading configuration via web handler at /-/reload.

	[FEATURE] Updates to promtool to reflect new Prometheus configuration

 features.

	[FEATURE] Add proxy_url parameter to scrape configurations to enable use of

 proxy servers.

	[FEATURE] Add console templates for Prometheus itself.

	[FEATURE] Allow relabeling the protocol scheme of targets.

	[FEATURE] Add predict_linear() query language function.

	[FEATURE] Support for authentication using bearer tokens, client certs, and

 CA certs.

	[FEATURE] Implement unary expressions for vector types (-foo, +foo).

	[FEATURE] Add console templates for the SNMP exporter.

	[FEATURE] Make it possible to relabel target scrape query parameters.

	[FEATURE] Add support for A and AAAA records in DNS service discovery.

	[ENHANCEMENT] Fix several flaky tests.

	[ENHANCEMENT] Switch to common routing package.

	[ENHANCEMENT] Use more resilient metric decoder.

	[ENHANCEMENT] Update vendored dependencies.

	[ENHANCEMENT] Add compression to more HTTP handlers.

	[ENHANCEMENT] Make -web.external-url flag help string more verbose.

	[ENHANCEMENT] Improve metrics around remote storage queues.

	[ENHANCEMENT] Use Go 1.5.1 instead of Go 1.4.2 in builds.

	[ENHANCEMENT] Update the architecture diagram in the README.md.

	[ENHANCEMENT] Time out sample appends in retrieval layer if the storage is

 backlogging.

	[ENHANCEMENT] Make hash_mod relabeling action use MD5 instead of FNV to

 enable better hash distribution.

	[ENHANCEMENT] Better tracking of targets between same service discovery

 mechanisms in one scrape configuration.

	[ENHANCEMENT] Handle parser and query evaluation runtime panics more

 gracefully.

	[ENHANCEMENT] Add IDs to H2 tags on status page to allow anchored linking.

	[BUGFIX] Fix watching multiple paths with Zookeeper serverset discovery.

	[BUGFIX] Fix high CPU usage on configuration reload.

	[BUGFIX] Fix disappearing __params on configuration reload.

	[BUGFIX] Make labelmap action available through configuration.

	[BUGFIX] Fix direct access of protobuf fields.

	[BUGFIX] Fix panic on Consul request error.

	[BUGFIX] Redirect of graph endpoint for prefixed setups.

	[BUGFIX] Fix series file deletion behavior when purging archived series.

	[BUGFIX] Fix error checking and logging around checkpointing.

	[BUGFIX] Fix map initialization in target manager.

	[BUGFIX] Fix draining of file watcher events in file-based service discovery.

	[BUGFIX] Add POST handler for /debug endpoints to fix CPU profiling.

	[BUGFIX] Fix several flaky tests.

	[BUGFIX] Fix busylooping in case a scrape configuration has no target

 providers defined.

	[BUGFIX] Fix exit behavior of static target provider.

	[BUGFIX] Fix configuration reloading loop upon shutdown.

	[BUGFIX] Add missing check for nil expression in expression parser.

	[BUGFIX] Fix error handling bug in test code.

	[BUGFIX] Fix Consul port meta label.

	[BUGFIX] Fix lexer bug that treated non-Latin Unicode digits as digits.

	[CLEANUP] Remove obsolete federation example from console templates.

	[CLEANUP] Remove duplicated Bootstrap JS inclusion on graph page.

	[CLEANUP] Switch to common log package.

	[CLEANUP] Update build environment scripts and Makefiles to work better with

 native Go build mechanisms and new Go 1.5 experimental vendoring support.

	[CLEANUP] Remove logged notice about 0.14.x configuration file format change.

	[CLEANUP] Move scrape-time metric label modification into SampleAppenders.

	[CLEANUP] Switch from github.com/client_golang/model to

 github.com/common/model and related type cleanups.

	[CLEANUP] Switch from github.com/client_golang/extraction to

 github.com/common/expfmt and related type cleanups.

	[CLEANUP] Exit Prometheus when the web server encounters a startup error.

	[CLEANUP] Remove non-functional alert-silencing links on alerting page.

	[CLEANUP] General cleanups to comments and code, derived from golint,

 go vet, or otherwise.

	[CLEANUP] When entering crash recovery, tell users how to cleanly shut down

 Prometheus.

	[CLEANUP] Remove internal support for multi-statement queries in query engine.

	[CLEANUP] Update AUTHORS.md.

	[CLEANUP] Don’t warn/increment metric upon encountering equal timestamps for

 the same series upon append.

	[CLEANUP] Resolve relative paths during configuration loading.

8.48 0.15.1 / 2015-07-27

	[BUGFIX] Fix vector matching behavior when there is a mix of equality and

 non-equality matchers in a vector selector and one matcher matches no series.

	[ENHANCEMENT] Allow overriding GOARCH and GOOS in Makefile.INCLUDE.

	[ENHANCEMENT] Update vendored dependencies.

8.49 0.15.0 / 2015-07-21

BREAKING CHANGES:

	Relative paths for rule files are now evaluated relative to the config file.

	External reachability flags (-web.*) consolidated.

	The default storage directory has been changed from /tmp/metrics

 to data in the local directory.

	The rule_checker tool has been replaced by promtool with

 different flags and more functionality.

	Empty labels are now removed upon ingestion into the

 storage. Matching empty labels is now equivalent to matching unset

 labels (mymetric{label=""} now matches series that don’t have

 label set at all).

	The special __meta_consul_tags label in Consul service discovery

 now starts and ends with tag separators to enable easier regex

 matching.

	The default scrape interval has been changed back from 1 minute to

 10 seconds.

All changes:

	[CHANGE] Change default storage directory to data in the current

 working directory.

	[CHANGE] Consolidate external reachability flags (-web.*)into one.

	[CHANGE] Deprecate keeping_extra modifier keyword, rename it to

 keep_common.

	[CHANGE] Improve label matching performance and treat unset labels

 like empty labels in label matchers.

	[CHANGE] Remove rule_checker tool and add generic promtool CLI

 tool which allows checking rules and configuration files.

	[CHANGE] Resolve rule files relative to config file.

	[CHANGE] Restore default ScrapeInterval of 1 minute instead of 10 seconds.

	[CHANGE] Surround __meta_consul_tags value with tag separators.

	[CHANGE] Update node disk console for new filesystem labels.

	[FEATURE] Add Consul’s ServiceAddress, Address, and ServicePort as

 meta labels to enable setting a custom scrape address if needed.

	[FEATURE] Add hashmod relabel action to allow for horizontal

 sharding of Prometheus servers.

	[FEATURE] Add honor_labels scrape configuration option to not

 overwrite any labels exposed by the target.

	[FEATURE] Add basic federation support on /federate.

	[FEATURE] Add optional RUNBOOK field to alert statements.

	[FEATURE] Add pre-relabel target labels to status page.

	[FEATURE] Add version information endpoint under /version.

	[FEATURE] Added initial stable API version 1 under /api/v1,

 including ability to delete series and query more metadata.

	[FEATURE] Allow configuring query parameters when scraping metrics endpoints.

	[FEATURE] Allow deleting time series via the new v1 API.

	[FEATURE] Allow individual ingested metrics to be relabeled.

	[FEATURE] Allow loading rule files from an entire directory.

	[FEATURE] Allow scalar expressions in range queries, improve error messages.

	[FEATURE] Support Zookeeper Serversets as a service discovery mechanism.

	[ENHANCEMENT] Add circleci yaml for Dockerfile test build.

	[ENHANCEMENT] Always show selected graph range, regardless of available data.

	[ENHANCEMENT] Change expression input field to multi-line textarea.

	[ENHANCEMENT] Enforce strict monotonicity of time stamps within a series.

	[ENHANCEMENT] Export build information as metric.

	[ENHANCEMENT] Improve UI of /alerts page.

	[ENHANCEMENT] Improve display of target labels on status page.

	[ENHANCEMENT] Improve initialization and routing functionality of web service.

	[ENHANCEMENT] Improve target URL handling and display.

	[ENHANCEMENT] New dockerfile using alpine-glibc base image and make.

	[ENHANCEMENT] Other minor fixes.

	[ENHANCEMENT] Preserve alert state across reloads.

	[ENHANCEMENT] Prettify flag help output even more.

	[ENHANCEMENT] README.md updates.

	[ENHANCEMENT] Raise error on unknown config parameters.

	[ENHANCEMENT] Refine v1 HTTP API output.

	[ENHANCEMENT] Show original configuration file contents on status

 page instead of serialized YAML.

	[ENHANCEMENT] Start HUP signal handler earlier to not exit upon HUP

 during startup.

	[ENHANCEMENT] Updated vendored dependencies.

	[BUGFIX] Do not panic in StringToDuration() on wrong duration unit.

	[BUGFIX] Exit on invalid rule files on startup.

	[BUGFIX] Fix a regression in the .Path console template variable.

	[BUGFIX] Fix chunk descriptor loading.

	[BUGFIX] Fix consoles “Prometheus” link to point to /

	[BUGFIX] Fix empty configuration file cases

	[BUGFIX] Fix float to int conversions in chunk encoding, which were

 broken for some architectures.

	[BUGFIX] Fix overflow detection for serverset config.

	[BUGFIX] Fix race conditions in retrieval layer.

	[BUGFIX] Fix shutdown deadlock in Consul SD code.

	[BUGFIX] Fix the race condition targets in the Makefile.

	[BUGFIX] Fix value display error in web console.

	[BUGFIX] Hide authentication credentials in config String() output.

	[BUGFIX] Increment dirty counter metric in storage only if

 setDirty(true) is called.

	[BUGFIX] Periodically refresh services in Consul to recover from

 missing events.

	[BUGFIX] Prevent overwrite of default global config when loading a

 configuration.

	[BUGFIX] Properly lex \r as whitespace in expression language.

	[BUGFIX] Validate label names in JSON target groups.

	[BUGFIX] Validate presence of regex field in relabeling configurations.

	[CLEANUP] Clean up initialization of remote storage queues.

	[CLEANUP] Fix go vet and golint violations.

	[CLEANUP] General cleanup of rules and query language code.

	[CLEANUP] Improve and simplify Dockerfile build steps.

	[CLEANUP] Improve and simplify build infrastructure, use go-bindata

 for web assets. Allow building without git.

	[CLEANUP] Move all utility packages into common util subdirectory.

	[CLEANUP] Refactor main, flag handling, and web package.

	[CLEANUP] Remove unused methods from Rule interface.

	[CLEANUP] Simplify default config handling.

	[CLEANUP] Switch human-readable times on web UI to UTC.

	[CLEANUP] Use templates.TemplateExpander for all page templates.

	[CLEANUP] Use new v1 HTTP API for querying and graphing.

8.50 0.14.0 / 2015-06-01

	[CHANGE] Configuration format changed and switched to YAML.

 (See the provided migration tool.)

	[ENHANCEMENT] Redesign of state-preserving target discovery.

	[ENHANCEMENT] Allow specifying scrape URL scheme and basic HTTP auth for non-static targets.

	[FEATURE] Allow attaching meaningful labels to targets via relabeling.

	[FEATURE] Configuration/rule reloading at runtime.

	[FEATURE] Target discovery via file watches.

	[FEATURE] Target discovery via Consul.

	[ENHANCEMENT] Simplified binary operation evaluation.

	[ENHANCEMENT] More stable component initialization.

	[ENHANCEMENT] Added internal expression testing language.

	[BUGFIX] Fix graph links with path prefix.

	[ENHANCEMENT] Allow building from source without git.

	[ENHANCEMENT] Improve storage iterator performance.

	[ENHANCEMENT] Change logging output format and flags.

	[BUGFIX] Fix memory alignment bug for 32bit systems.

	[ENHANCEMENT] Improve web redirection behavior.

	[ENHANCEMENT] Allow overriding default hostname for Prometheus URLs.

	[BUGFIX] Fix double slash in URL sent to alertmanager.

	[FEATURE] Add resets() query function to count counter resets.

	[FEATURE] Add changes() query function to count the number of times a gauge changed.

	[FEATURE] Add increase() query function to calculate a counter’s increase.

	[ENHANCEMENT] Limit retrievable samples to the storage’s retention window.

8.51 0.13.4 / 2015-05-23

	[BUGFIX] Fix a race while checkpointing fingerprint mappings.

8.52 0.13.3 / 2015-05-11

	[BUGFIX] Handle fingerprint collisions properly.

	[CHANGE] Comments in rules file must start with #. (The undocumented //

 and /*...*/ comment styles are no longer supported.)

	[ENHANCEMENT] Switch to custom expression language parser and evaluation

 engine, which generates better error messages, fixes some parsing edge-cases,

 and enables other future enhancements (like the ones below).

	[ENHANCEMENT] Limit maximum number of concurrent queries.

	[ENHANCEMENT] Terminate running queries during shutdown.

8.53 0.13.2 / 2015-05-05

	[MAINTENANCE] Updated vendored dependencies to their newest versions.

	[MAINTENANCE] Include rule_checker and console templates in release tarball.

	[BUGFIX] Sort NaN as the lowest value.

	[ENHANCEMENT] Add square root, stddev and stdvar functions.

	[BUGFIX] Use scrape_timeout for scrape timeout, not scrape_interval.

	[ENHANCEMENT] Improve chunk and chunkDesc loading, increase performance when

 reading from disk.

	[BUGFIX] Show correct error on wrong DNS response.

8.54 0.13.1 / 2015-04-09

	[BUGFIX] Treat memory series with zero chunks correctly in series maintenance.

	[ENHANCEMENT] Improve readability of usage text even more.

8.55 0.13.0 / 2015-04-08

	[ENHANCEMENT] Double-delta encoding for chunks, saving typically 40% of

 space, both in RAM and on disk.

	[ENHANCEMENT] Redesign of chunk persistence queuing, increasing performance

 on spinning disks significantly.

	[ENHANCEMENT] Redesign of sample ingestion, increasing ingestion performance.

	[FEATURE] Added ln, log2, log10 and exp functions to the query language.

	[FEATURE] Experimental write support to InfluxDB.

	[FEATURE] Allow custom timestamps in instant query API.

	[FEATURE] Configurable path prefix for URLs to support proxies.

	[ENHANCEMENT] Increase of rule_checker CLI usability.

	[CHANGE] Show special float values as gaps.

	[ENHANCEMENT] Made usage output more readable.

	[ENHANCEMENT] Increased resilience of the storage against data corruption.

	[ENHANCEMENT] Various improvements around chunk encoding.

	[ENHANCEMENT] Nicer formatting of target health table on /status.

	[CHANGE] Rename UNREACHABLE to UNHEALTHY, ALIVE to HEALTHY.

	[BUGFIX] Strip trailing slash in alertmanager URL.

	[BUGFIX] Avoid +InfYs and similar, just display +Inf.

	[BUGFIX] Fixed HTML-escaping at various places.

	[BUGFIX] Fixed special value handling in division and modulo of the query

 language.

	[BUGFIX] Fix embed-static.sh.

	[CLEANUP] Added initial HTTP API tests.

	[CLEANUP] Misc. other code cleanups.

	[MAINTENANCE] Updated vendored dependencies to their newest versions.

8.56 0.12.0 / 2015-03-04

	[CHANGE] Use client_golang v0.3.1. THIS CHANGES FINGERPRINTING AND INVALIDATES

 ALL PERSISTED FINGERPRINTS. You have to wipe your storage to use this or

 later versions. There is a version guard in place that will prevent you to

 run Prometheus with the stored data of an older Prometheus.

	[BUGFIX] The change above fixes a weakness in the fingerprinting algorithm.

	[ENHANCEMENT] The change above makes fingerprinting faster and less allocation

 intensive.

	[FEATURE] OR operator and vector matching options. See docs for details.

	[ENHANCEMENT] Scientific notation and special float values (Inf, NaN) now

 supported by the expression language.

	[CHANGE] Dockerfile makes Prometheus use the Docker volume to store data

 (rather than /tmp/metrics).

	[CHANGE] Makefile uses Go 1.4.2.

8.57 0.11.1 / 2015-02-27

	[BUGFIX] Make series maintenance complete again. (Ever since 0.9.0rc4,

 or commit 0851945, series would not be archived, chunk descriptors would

 not be evicted, and stale head chunks would never be closed. This happened

 due to accidental deletion of a line calling a (well tested :) function.

	[BUGFIX] Do not double count head chunks read from checkpoint on startup.

 Also fix a related but less severe bug in counting chunk descriptors.

	[BUGFIX] Check last time in head chunk for head chunk timeout, not first.

	[CHANGE] Update vendoring due to vendoring changes in client_golang.

	[CLEANUP] Code cleanups.

	[ENHANCEMENT] Limit the number of ‘dirty’ series counted during checkpointing.

8.58 0.11.0 / 2015-02-23

	[FEATURE] Introduce new metric type Histogram with server-side aggregation.

	[FEATURE] Add offset operator.

	[FEATURE] Add floor, ceil and round functions.

	[CHANGE] Change instance identifiers to be host:port.

	[CHANGE] Dependency management and vendoring changed/improved.

	[CHANGE] Flag name changes to create consistency between various Prometheus

 binaries.

	[CHANGE] Show unlimited number of metrics in autocomplete.

	[CHANGE] Add query timeout.

	[CHANGE] Remove labels on persist error counter.

	[ENHANCEMENT] Various performance improvements for sample ingestion.

	[ENHANCEMENT] Various Makefile improvements.

	[ENHANCEMENT] Various console template improvements, including

 proof-of-concept for federation via console templates.

	[ENHANCEMENT] Fix graph JS glitches and simplify graphing code.

	[ENHANCEMENT] Dramatically decrease resources for file embedding.

	[ENHANCEMENT] Crash recovery saves lost series data in ‘orphaned’ directory.

	[BUGFIX] Fix aggregation grouping key calculation.

	[BUGFIX] Fix Go download path for various architectures.

	[BUGFIX] Fixed the link of the Travis build status image.

	[BUGFIX] Fix Rickshaw/D3 version mismatch.

	[CLEANUP] Various code cleanups.

8.59 0.10.0 / 2015-01-26

	[CHANGE] More efficient JSON result format in query API. This requires

 up-to-date versions of PromDash and prometheus_cli, too.

	[ENHANCEMENT] Excluded non-minified Bootstrap assets and the Bootstrap maps

 from embedding into the binary. Those files are only used for debugging,

 and then you can use -web.use-local-assets. By including fewer files, the

 RAM usage during compilation is much more manageable.

	[ENHANCEMENT] Help link points to http://prometheus.github.io now.

	[FEATURE] Consoles for haproxy and cloudwatch.

	[BUGFIX] Several fixes to graphs in consoles.

	[CLEANUP] Removed a file size check that did not check anything.

8.60 0.9.0 / 2015-01-23

	[CHANGE] Reworked command line flags, now more consistent and taking into

 account needs of the new storage backend (see below).

	[CHANGE] Metric names are dropped after certain transformations.

	[CHANGE] Changed partitioning of summary metrics exported by Prometheus.

	[CHANGE] Got rid of Gerrit as a review tool.

	[CHANGE] ‘Tabular’ view now the default (rather than ‘Graph’) to avoid

 running very expensive queries accidentally.

	[CHANGE] On-disk format for stored samples changed. For upgrading, you have

 to nuke your old files completely. See “Complete rewrite of the storage

	[CHANGE] Removed 2nd argument from delta.

	[FEATURE] Added a deriv function.

	[FEATURE] Console templates.

	[FEATURE] Added absent function.

	[FEATURE] Allow omitting the metric name in queries.

	[BUGFIX] Removed all known race conditions.

	[BUGFIX] Metric mutations now handled correctly in all cases.

	[ENHANCEMENT] Proper double-start protection.

	[ENHANCEMENT] Complete rewrite of the storage layer. Benefits include:

	Better query performance.

	More samples in less RAM.

	Better memory management.

	Scales up to millions of time series and thousands of samples ingested

per second.

	Purging of obsolete samples much cleaner now, up to completely

“forgetting” obsolete time series.

	Proper instrumentation to diagnose the storage layer with… well…

Prometheus.

	Pure Go implementation, no need for cgo and shared C libraries anymore.

	Better concurrency.

	[ENHANCEMENT] Copy-on-write semantics in the AST layer.

	[ENHANCEMENT] Switched from Go 1.3 to Go 1.4.

	[ENHANCEMENT] Vendored external dependencies with godeps.

	[ENHANCEMENT] Numerous Web UI improvements, moved to Bootstrap3 and

 Rickshaw 1.5.1.

	[ENHANCEMENT] Improved Docker integration.

	[ENHANCEMENT] Simplified the Makefile contraption.

	[CLEANUP] Put meta-data files into proper shape (LICENSE, README.md etc.)

	[CLEANUP] Removed all legitimate ‘go vet’ and ‘golint’ warnings.

	[CLEANUP] Removed dead code.

8.61 0.8.0 / 2014-09-04

	[ENHANCEMENT] Stagger scrapes to spread out load.

	[BUGFIX] Correctly quote HTTP Accept header.

8.62 0.7.0 / 2014-08-06

	[FEATURE] Added new functions: abs(), topk(), bottomk(), drop_common_labels().

	[FEATURE] Let console templates get graph links from expressions.

	[FEATURE] Allow console templates to dynamically include other templates.

	[FEATURE] Template consoles now have access to their URL.

	[BUGFIX] Fixed time() function to return evaluation time, not wallclock time.

	[BUGFIX] Fixed HTTP connection leak when targets returned a non-200 status.

	[BUGFIX] Fixed link to console templates in UI.

	[PERFORMANCE] Removed extra memory copies while scraping targets.

	[ENHANCEMENT] Switched from Go 1.2.1 to Go 1.3.

	[ENHANCEMENT] Made metrics exported by Prometheus itself more consistent.

	[ENHANCEMENT] Removed incremental backoffs for unhealthy targets.

	[ENHANCEMENT] Dockerfile also builds Prometheus support tools now.

8.63 0.6.0 / 2014-06-30

	[FEATURE] Added console and alert templates support, along with various template functions.

	[PERFORMANCE] Much faster and more memory-efficient flushing to disk.

	[ENHANCEMENT] Query results are now only logged when debugging.

	[ENHANCEMENT] Upgraded to new Prometheus client library for exposing metrics.

	[BUGFIX] Samples are now kept in memory until fully flushed to disk.

	[BUGFIX] Non-200 target scrapes are now treated as an error.

	[BUGFIX] Added installation step for missing dependency to Dockerfile.

	[BUGFIX] Removed broken and unused “User Dashboard” link.

8.64 0.5.0 / 2014-05-28

	[BUGFIX] Fixed next retrieval time display on status page.

	[BUGFIX] Updated some variable references in tools subdir.

	[FEATURE] Added support for scraping metrics via the new text format.

	[PERFORMANCE] Improved label matcher performance.

	[PERFORMANCE] Removed JSON indentation in query API, leading to smaller response sizes.

	[ENHANCEMENT] Added internal check to verify temporal order of streams.

	[ENHANCEMENT] Some internal refactorings.

8.65 0.4.0 / 2014-04-17

	[FEATURE] Vectors and scalars may now be reversed in binary operations (<scalar> <binop> <vector>).

	[FEATURE] It’s possible to shutdown Prometheus via a /-/quit web endpoint now.

	[BUGFIX] Fix for a deadlock race condition in the memory storage.

	[BUGFIX] Mac OS X build fixed.

	[BUGFIX] Built from Go 1.2.1, which has internal fixes to race conditions in garbage collection handling.

	[ENHANCEMENT] Internal storage interface refactoring that allows building e.g. the rule_checker tool without LevelDB dynamic library dependencies.

	[ENHANCEMENT] Cleanups around shutdown handling.

	[PERFORMANCE] Preparations for better memory reuse during marshalling / unmarshalling.

9 Contributing

Prometheus uses GitHub to manage reviews of pull requests.

	If you are a new contributor see: Steps to Contribute

	If you have a trivial fix or improvement, go ahead and create a pull request,

 addressing (with @...) a suitable maintainer of this repository (see

 MAINTAINERS.md) in the description of the pull request.

	If you plan to do something more involved, first discuss your ideas

 on our mailing list.

 This will avoid unnecessary work and surely give you and us a good deal

 of inspiration. Also please see our non-goals issue on areas that the Prometheus community doesn’t plan to work on.

	Relevant coding style guidelines are the Go Code Review

 Comments

 and the Formatting and style section of Peter Bourgon’s Go: Best

 Practices for Production

 Environments.

	Be sure to sign off on the DCO

9.1 Steps to Contribute

Should you wish to work on an issue, please claim it first by commenting on the GitHub issue that you want to work on it. This is to prevent duplicated efforts from contributors on the same issue.

Please check the low-hanging-fruit label to find issues that are good for getting started. If you have questions about one of the issues, with or without the tag, please comment on them and one of the maintainers will clarify it. For a quicker response, contact us over IRC.

For complete instructions on how to compile see: Building From Source

For quickly compiling and testing your changes do:

For building.
go build ./cmd/prometheus/
./prometheus

For testing.
make test # Make sure all the tests pass before you commit and push :)

All our issues are regularly tagged so that you can also filter down the issues involving the components you want to work on. For our labelling policy refer the wiki page.

9.2 Pull Request Checklist

	Branch from the master branch and, if needed, rebase to the current master branch before submitting your pull request. If it doesn’t merge cleanly with master you may be asked to rebase your changes.

	Commits should be as small as possible, while ensuring that each commit is correct independently (i.e., each commit should compile and pass tests).

	If your patch is not getting reviewed or you need a specific person to review it, you can @-reply a reviewer asking for a review in the pull request or a comment, or you can ask for a review on IRC channel #prometheus on irc.freenode.net (for the easiest start, join via Riot).

	Add tests relevant to the fixed bug or new feature.

Maintainers of this repository with their focus areas:

	Brian Brazil brian.brazil@robustperception.io @brian-brazil: Console templates; semantics of PromQL, service discovery, and relabeling.

	Fabian Reinartz fabian.reinartz@coreos.com @fabxc: PromQL parsing and evaluation; implementation of retrieval, alert notification, and service discovery.

	Julius Volz julius.volz@gmail.com @juliusv: Remote storage integrations; web UI.

10 Prometheus [image: Build Status]

[image: CircleCI]

[image: Docker Repository on Quay]

[image: Docker Pulls]

[image: Go Report Card]

[image: CII Best Practices]

Visit prometheus.io for the full documentation,

examples and guides.

Prometheus, a Cloud Native Computing Foundation project, is a systems and service monitoring system. It collects metrics

from configured targets at given intervals, evaluates rule expressions,

displays the results, and can trigger alerts if some condition is observed

to be true.

Prometheus’ main distinguishing features as compared to other monitoring systems are:

	a multi-dimensional data model (timeseries defined by metric name and set of key/value dimensions)

	a flexible query language to leverage this dimensionality

	no dependency on distributed storage; single server nodes are autonomous

	timeseries collection happens via a pull model over HTTP

	pushing timeseries is supported via an intermediary gateway

	targets are discovered via service discovery or static configuration

	multiple modes of graphing and dashboarding support

	support for hierarchical and horizontal federation

10.1 Architecture overview

[image:]

10.2 Install

There are various ways of installing Prometheus.

10.2.1 Precompiled binaries

Precompiled binaries for released versions are available in the

download section

on prometheus.io. Using the latest production release binary

is the recommended way of installing Prometheus.

See the Installing

chapter in the documentation for all the details.

Debian packages are available.

10.2.2 Docker images

Docker images are available on Quay.io.

You can launch a Prometheus container for trying it out with

$ docker run --name prometheus -d -p 127.0.0.1:9090:9090 quay.io/prometheus/prometheus

Prometheus will now be reachable at http://localhost:9090/.

10.2.3 Building from source

To build Prometheus from the source code yourself you need to have a working

Go environment with version 1.10 or greater installed.

You can directly use the go tool to download and install the prometheus

and promtool binaries into your GOPATH:

$ go get github.com/prometheus/prometheus/cmd/...
$ prometheus --config.file=your_config.yml

You can also clone the repository yourself and build using make:

$ mkdir -p $GOPATH/src/github.com/prometheus
$ cd $GOPATH/src/github.com/prometheus
$ git clone https://github.com/prometheus/prometheus.git
$ cd prometheus
$ make build
$./prometheus --config.file=your_config.yml

The Makefile provides several targets:

	build: build the prometheus and promtool binaries

	test: run the tests

	test-short: run the short tests

	format: format the source code

	vet: check the source code for common errors

	assets: rebuild the static assets

	docker: build a docker container for the current HEAD

10.3 More information

	The source code is periodically indexed: Prometheus Core.

	You will find a Travis CI configuration in .travis.yml.

	See the Community page for how to reach the Prometheus developers and users on various communication channels.

10.4 Contributing

Refer to CONTRIBUTING.md

10.5 License

Apache License 2.0, see LICENSE.

10.6 Prometheus Community Code of Conduct

Prometheus follows the CNCF Code of Conduct.

OEBPS/Images/cover00046.gif
Prometheus

GitHub - prometheus/prometheus: The
Prometheus monitoring system and time series
database.

prometheus

OEBPS/Images/image00045.jpeg

